Empirical explorations of faster Fermat factorisation, part 5

by | Published | Last updated

Introduction

This is the fifth in a series of technical articles presenting original work towards an open-source, free software implementation of the Fermat factorisation algorithm optimised for speed. This article uses concepts and terminology introduced in the previous articles. In particular it continues the explorations of Part 3.

Part 3 included a demonstration of tuning YAFU's filtering modulus, M, for a particular number to factorise, N, where N was chosen to illustrate the advantages of tuning. This article will explore a more general way to tune the YAFU primary filter or any filter that works in a similar way, for any N.

See the Related section below for the other articles in the series.

Terminology

big square
Successful factorisation finds b2 - s2 = N where b2 is called here the big square. See Part 1.
GPL
GNU general public license
LSB
least significant bit
LSD
least significant digit
M
The input range, or modulus, of the filter. In effect, what happens during filtering is that a big presquare candidate is reduced mod M and the residue tested in the filter to discover whether it is viable. This is named after the variable in the YAFU code. See Part 3.
N
The number to factorise, of the form pq where p and q are large primes; possibly the modulus of an RSA public key.
presquare
The root x of any square x2 will be called the presquare.
RR
reduction ratio, defined in Part 3.
RSA
Rivest Shamir Adleman
small square
Successful factorisation finds b2 - s2 = N where s2 is called here the small square. See Part 1.
YAFU
Yet Another Factorisation Utility. See Part 2.

A systematic approach to tuning the filter

As described in Part 3, in its search loop, YAFU reduces the big presquare modulo 176,400 and uses an array with 176,400 elements, called skip[], indexed by this residue, to decide which values in that range are possible big presquares. The impossible ones are skipped. The table is computed for N before the main search loop. The modulus is represented in the code by the variable M and is set as follows:

uint32 M = 2 * 2 * 2 * 2 * 3 * 3 * 5 * 5 * 7 * 7;

Here we will put some arbitrary limits on the task by using only the primes from YAFU's main filter. The motivation for this is also that these small primes are the ones where the most benefit is to be gained. As the prime base becomes larger, its reduction ratio tends towards 2, and the difference between its A and B series becomes smaller. There is therefore less scope for gains from tuning.

Further limits here are to restrict these choices to a maximum number of LSDs as follows:

These are somewhat arbitrary choices but the motivation is that there is a law of diminishing returns for increasing the number of digits, as shown by Table 3 in Part 3. For example, adding a third LSD of base 7 would increase the filter RR from 3.06 to only 3.24 while increasing the size of the table by almost a factor of 7.

The idea is to tune this filter for a particular modulus by selecting how many LSDs from each of these bases to include in the filter.

As discovered in Part 3, there are two series of filter reduction ratios for an odd prime base and three series for the even prime base. This means that depending on N

So in total there are 3 x 2 x 2 x 2 = 24 different possible combinations.

At factorisation time the factorising programme will categorise N by inspecting its single least significant digit in each of these bases and determining the resulting series as in Figure 1 in Part 3. It will then accordingly select one of 24 predetermined optimum values of the filter modulus M. The task of determining those 24 optimum values is not part of factorisation but is part of the design of the implementation.

With the above restrictions, the tuned modulus for the filter can be any combination of:

So there are a total of 11 x 6 x 4 x 3 = 792 possible values for M. This means it is quite tractable to conduct an exhaustive search to find the optimum, providing we can define what optimum means.

This is a standard optimisation problem. There are two variables:

This article does not investigate the trade-off between table size and reduction ratio but simply produces a list of all the possible optimum values. This list can be called a Pareto front because it does not include any combination where another combination has both a better reduction ratio and a better or equal number of table entries.

In this case the optimisation has been done on the basis that the table size is the number of entries that pass the filter rather than M, the input range of the filter. As noted in Part 3, the YAFU implementation made the table size M.

The Appendix contains the list that results from this optimisation. It was generated by software which exhaustively tried all the viable combinations and then eliminated those that could not be an optimum. In the section below, the software is released as open source, free software under a GPL licence.

The categories of N have been named systematically as a string of four characters, with each character representing the series that N generates in a particular base. Each of the first three characters is either ‘A’ or ‘B’, representing the series in bases 7, 5 and 3 respectively. The last character is ‘1’, ‘3’ or ‘5’, representing the bit pattern associated with each of the three series in base 2.

For example “ABB1” means:

GPL free software to download

The open-source software here generates the values in the table in the Appendix. It consists of the following files with the following SHA256 hashes at the following locations on this website.

3972dc9744f6499f0f9b2dbf76696f2ae7ad8af9b23dde66d6af86c9dfb36986  /download/GPLv3.txt
3cf75b0d2f736b4b9d905b44e293c907429c72021b64b9f5be23a14ff2ad2119  /download/optimise.cc
cf1691cbe1464625dbb331e80c743388eb4d0f002da28fc877c0b1e5f4f7c1df  /download/optimise.mk
0bb2e110cd620c477abe2eb5fa76d504f3c0848c8776e5a4e3ad740f0d7e9b88  /download/series.cc
bec26e3f1db46594409c8ead98d078129547783c77093e60870c57a4a0ce0117  /download/stop2.cc
ad05fa368d32fc3cc3a7521eed6cb4a6a52ba196a39ec3e928580d1d3a687b84  /download/stop2.h

The makefile optimise.mk builds two executable programmes, series and optimise. The programme series computes general information related to reduction ratio series based on the first few primes. The programme optimise generates the Pareto front, using a header file generated by series.

With further processing, the information produced by series could also be used for other purposes, including generating the three tables of reduction ratios in Part 3.

Appendix - Tabulated possible optimum values of filter modulus M for each category of N

Table 1. The Pareto front of the optimum value for M, the modulus of a filter used in Fermat factorisation. The table shows a list of possible optimum values for each of 24 different categories, AAA1 - BBB3, of N, the number to factorise. This filter uses primes 2,3,5,7 with limits on the maximum exponent of each. In an implementation a designer would select only one of the values in each of the categories, the selection depending on the trade-off between RR (desired higher) and the number of table entries (desired lower) for the particular implementation. At run time the implementation would categorise N into one of the 24 categories and use the filter value selected at design time for that category.
N category RR Filter table size Filter modulus, M Factors of M
AAA1 4.50 2 9 32
AAA1 9.00 4 36 32 x 22
AAA1 18.00 8 144 32 x 24
AAA1 36.00 16 576 32 x 26
AAA1 48.00 24 1152 32 x 27
AAA1 72.00 32 2304 32 x 28
AAA1 82.29 56 4608 32 x 29
AAA1 108.00 64 6912 33 x 28
AAA1 120.00 96 11520 5 x 32 x 28
AAA1 128.57 112 14400 52 x 32 x 26
AAA1 162.00 128 20736 34 x 28
AAA1 171.43 168 28800 52 x 32 x 27
AAA1 180.00 192 34560 5 x 33 x 28
AAA1 257.14 224 57600 52 x 32 x 28
AAA1 270.00 384 103680 5 x 34 x 28
AAA1 293.88 392 115200 52 x 32 x 29
AAA1 385.71 448 172800 52 x 33 x 28
AAA1 440.82 784 345600 52 x 33 x 29
AAA1 578.57 896 518400 52 x 34 x 28
AAA1 661.22 1568 1036800 52 x 34 x 29
AAA1 675.00 1792 1209600 7 x 52 x 33 x 28
AAA1 771.43 2688 2073600 52 x 34 x 210
AAA1 1012.50 3584 3628800 7 x 52 x 34 x 28
AAA1 1157.14 6272 7257600 7 x 52 x 34 x 29
AAA1 1181.25 7168 8467200 72 x 52 x 33 x 28
AAA1 1350.00 10752 14515200 7 x 52 x 34 x 210
AAA1 1771.88 14336 25401600 72 x 52 x 34 x 28
AAA1 2025.00 25088 50803200 72 x 52 x 34 x 29
AAA1 2362.50 43008 101606400 72 x 52 x 34 x 210
AAA1 2577.27 118272 304819200 72 x 52 x 35 x 210
AAA1 2667.34 190464 508032000 72 x 53 x 34 x 210
AAA1 2909.82 523776 1524096000 72 x 53 x 35 x 210
BAA1 4.50 2 9 32
BAA1 9.00 4 36 32 x 22
BAA1 10.50 6 63 7 x 32
BAA1 18.00 8 144 32 x 24
BAA1 21.00 12 252 7 x 32 x 22
BAA1 36.00 16 576 32 x 26
BAA1 48.00 24 1152 32 x 27
BAA1 72.00 32 2304 32 x 28
BAA1 84.00 48 4032 7 x 32 x 26
BAA1 108.00 64 6912 33 x 28
BAA1 112.00 72 8064 7 x 32 x 27
BAA1 168.00 96 16128 7 x 32 x 28
BAA1 192.00 168 32256 7 x 32 x 29
BAA1 252.00 192 48384 7 x 33 x 28
BAA1 257.14 224 57600 52 x 32 x 28
BAA1 280.00 288 80640 7 x 5 x 32 x 28
BAA1 300.00 336 100800 7 x 52 x 32 x 26
BAA1 378.00 384 145152 7 x 34 x 28
BAA1 385.71 448 172800 52 x 33 x 28
BAA1 400.00 504 201600 7 x 52 x 32 x 27
BAA1 420.00 576 241920 7 x 5 x 33 x 28
BAA1 600.00 672 403200 7 x 52 x 32 x 28
BAA1 630.00 1152 725760 7 x 5 x 34 x 28
BAA1 685.71 1176 806400 7 x 52 x 32 x 29
BAA1 900.00 1344 1209600 7 x 52 x 33 x 28
BAA1 1028.57 2352 2419200 7 x 52 x 33 x 29
BAA1 1350.00 2688 3628800 7 x 52 x 34 x 28
BAA1 1542.86 4704 7257600 7 x 52 x 34 x 29
BAA1 1800.00 8064 14515200 7 x 52 x 34 x 210
BAA1 1963.64 22176 43545600 7 x 52 x 35 x 210
BAA1 2032.26 35712 72576000 7 x 53 x 34 x 210
BAA1 2217.01 98208 217728000 7 x 53 x 35 x 210
ABA1 4.50 2 9 32
ABA1 11.25 4 45 5 x 32
ABA1 22.50 8 180 5 x 32 x 22
ABA1 45.00 16 720 5 x 32 x 24
ABA1 48.00 24 1152 32 x 27
ABA1 90.00 32 2880 5 x 32 x 26
ABA1 120.00 48 5760 5 x 32 x 27
ABA1 180.00 64 11520 5 x 32 x 28
ABA1 205.71 112 23040 5 x 32 x 29
ABA1 270.00 128 34560 5 x 33 x 28
ABA1 308.57 224 69120 5 x 33 x 29
ABA1 405.00 256 103680 5 x 34 x 28
ABA1 462.86 448 207360 5 x 34 x 29
ABA1 472.50 512 241920 7 x 5 x 33 x 28
ABA1 540.00 768 414720 5 x 34 x 210
ABA1 708.75 1024 725760 7 x 5 x 34 x 28
ABA1 810.00 1792 1451520 7 x 5 x 34 x 29
ABA1 826.88 2048 1693440 72 x 5 x 33 x 28
ABA1 945.00 3072 2903040 7 x 5 x 34 x 210
ABA1 1240.31 4096 5080320 72 x 5 x 34 x 28
ABA1 1417.50 7168 10160640 72 x 5 x 34 x 29
ABA1 1653.75 12288 20321280 72 x 5 x 34 x 210
ABA1 1804.09 33792 60963840 72 x 5 x 35 x 210
BBA1 4.50 2 9 32
BBA1 11.25 4 45 5 x 32
BBA1 22.50 8 180 5 x 32 x 22
BBA1 26.25 12 315 7 x 5 x 32
BBA1 45.00 16 720 5 x 32 x 24
BBA1 52.50 24 1260 7 x 5 x 32 x 22
BBA1 90.00 32 2880 5 x 32 x 26
BBA1 120.00 48 5760 5 x 32 x 27
BBA1 180.00 64 11520 5 x 32 x 28
BBA1 210.00 96 20160 7 x 5 x 32 x 26
BBA1 270.00 128 34560 5 x 33 x 28
BBA1 280.00 144 40320 7 x 5 x 32 x 27
BBA1 420.00 192 80640 7 x 5 x 32 x 28
BBA1 480.00 336 161280 7 x 5 x 32 x 29
BBA1 630.00 384 241920 7 x 5 x 33 x 28
BBA1 720.00 672 483840 7 x 5 x 33 x 29
BBA1 945.00 768 725760 7 x 5 x 34 x 28
BBA1 1080.00 1344 1451520 7 x 5 x 34 x 29
BBA1 1260.00 2304 2903040 7 x 5 x 34 x 210
BBA1 1374.55 6336 8709120 7 x 5 x 35 x 210
AAB1 3.00 1 3 3
AAB1 6.00 2 12 3 x 22
AAB1 12.00 4 48 3 x 24
AAB1 24.00 8 192 3 x 26
AAB1 32.00 12 384 3 x 27
AAB1 48.00 16 768 3 x 28
AAB1 54.86 28 1536 3 x 29
AAB1 80.00 48 3840 5 x 3 x 28
AAB1 85.71 56 4800 52 x 3 x 26
AAB1 114.29 84 9600 52 x 3 x 27
AAB1 171.43 112 19200 52 x 3 x 28
AAB1 195.92 196 38400 52 x 3 x 29
AAB1 228.57 336 76800 52 x 3 x 210
AAB1 300.00 448 134400 7 x 52 x 3 x 28
AAB1 342.86 784 268800 7 x 52 x 3 x 29
AAB1 400.00 1344 537600 7 x 52 x 3 x 210
AAB1 525.00 1792 940800 72 x 52 x 3 x 28
AAB1 600.00 3136 1881600 72 x 52 x 3 x 29
AAB1 700.00 5376 3763200 72 x 52 x 3 x 210
AAB1 790.32 23808 18816000 72 x 53 x 3 x 210
BAB1 3.00 1 3 3
BAB1 6.00 2 12 3 x 22
BAB1 7.00 3 21 7 x 3
BAB1 12.00 4 48 3 x 24
BAB1 14.00 6 84 7 x 3 x 22
BAB1 24.00 8 192 3 x 26
BAB1 32.00 12 384 3 x 27
BAB1 48.00 16 768 3 x 28
BAB1 56.00 24 1344 7 x 3 x 26
BAB1 74.67 36 2688 7 x 3 x 27
BAB1 112.00 48 5376 7 x 3 x 28
BAB1 128.00 84 10752 7 x 3 x 29
BAB1 171.43 112 19200 52 x 3 x 28
BAB1 186.67 144 26880 7 x 5 x 3 x 28
BAB1 200.00 168 33600 7 x 52 x 3 x 26
BAB1 266.67 252 67200 7 x 52 x 3 x 27
BAB1 400.00 336 134400 7 x 52 x 3 x 28
BAB1 457.14 588 268800 7 x 52 x 3 x 29
BAB1 533.33 1008 537600 7 x 52 x 3 x 210
BAB1 602.15 4464 2688000 7 x 53 x 3 x 210
ABB1 3.00 1 3 3
ABB1 7.50 2 15 5 x 3
ABB1 15.00 4 60 5 x 3 x 22
ABB1 30.00 8 240 5 x 3 x 24
ABB1 32.00 12 384 3 x 27
ABB1 60.00 16 960 5 x 3 x 26
ABB1 80.00 24 1920 5 x 3 x 27
ABB1 120.00 32 3840 5 x 3 x 28
ABB1 137.14 56 7680 5 x 3 x 29
ABB1 160.00 96 15360 5 x 3 x 210
ABB1 210.00 128 26880 7 x 5 x 3 x 28
ABB1 240.00 224 53760 7 x 5 x 3 x 29
ABB1 280.00 384 107520 7 x 5 x 3 x 210
ABB1 367.50 512 188160 72 x 5 x 3 x 28
ABB1 420.00 896 376320 72 x 5 x 3 x 29
ABB1 490.00 1536 752640 72 x 5 x 3 x 210
BBB1 3.00 1 3 3
BBB1 7.50 2 15 5 x 3
BBB1 15.00 4 60 5 x 3 x 22
BBB1 17.50 6 105 7 x 5 x 3
BBB1 30.00 8 240 5 x 3 x 24
BBB1 35.00 12 420 7 x 5 x 3 x 22
BBB1 60.00 16 960 5 x 3 x 26
BBB1 80.00 24 1920 5 x 3 x 27
BBB1 120.00 32 3840 5 x 3 x 28
BBB1 140.00 48 6720 7 x 5 x 3 x 26
BBB1 186.67 72 13440 7 x 5 x 3 x 27
BBB1 280.00 96 26880 7 x 5 x 3 x 28
BBB1 320.00 168 53760 7 x 5 x 3 x 29
BBB1 373.33 288 107520 7 x 5 x 3 x 210
AAA5 4.50 2 9 32
AAA5 9.00 4 36 32 x 22
AAA5 36.00 8 288 32 x 25
AAA5 54.00 16 864 33 x 25
AAA5 60.00 24 1440 5 x 32 x 25
AAA5 81.00 32 2592 34 x 25
AAA5 90.00 48 4320 5 x 33 x 25
AAA5 128.57 56 7200 52 x 32 x 25
AAA5 135.00 96 12960 5 x 34 x 25
AAA5 192.86 112 21600 52 x 33 x 25
AAA5 289.29 224 64800 52 x 34 x 25
AAA5 337.50 448 151200 7 x 52 x 33 x 25
AAA5 506.25 896 453600 7 x 52 x 34 x 25
AAA5 590.62 1792 1058400 72 x 52 x 33 x 25
AAA5 885.94 3584 3175200 72 x 52 x 34 x 25
AAA5 966.48 9856 9525600 72 x 52 x 35 x 25
AAA5 1000.25 15872 15876000 72 x 53 x 34 x 25
AAA5 1091.18 43648 47628000 72 x 53 x 35 x 25
BAA5 4.50 2 9 32
BAA5 9.00 4 36 32 x 22
BAA5 10.50 6 63 7 x 32
BAA5 36.00 8 288 32 x 25
BAA5 54.00 16 864 33 x 25
BAA5 84.00 24 2016 7 x 32 x 25
BAA5 126.00 48 6048 7 x 33 x 25
BAA5 128.57 56 7200 52 x 32 x 25
BAA5 140.00 72 10080 7 x 5 x 32 x 25
BAA5 189.00 96 18144 7 x 34 x 25
BAA5 192.86 112 21600 52 x 33 x 25
BAA5 210.00 144 30240 7 x 5 x 33 x 25
BAA5 300.00 168 50400 7 x 52 x 32 x 25
BAA5 315.00 288 90720 7 x 5 x 34 x 25
BAA5 450.00 336 151200 7 x 52 x 33 x 25
BAA5 675.00 672 453600 7 x 52 x 34 x 25
BAA5 736.36 1848 1360800 7 x 52 x 35 x 25
BAA5 762.10 2976 2268000 7 x 53 x 34 x 25
BAA5 831.38 8184 6804000 7 x 53 x 35 x 25
ABA5 4.50 2 9 32
ABA5 11.25 4 45 5 x 32
ABA5 36.00 8 288 32 x 25
ABA5 90.00 16 1440 5 x 32 x 25
ABA5 135.00 32 4320 5 x 33 x 25
ABA5 202.50 64 12960 5 x 34 x 25
ABA5 236.25 128 30240 7 x 5 x 33 x 25
ABA5 354.38 256 90720 7 x 5 x 34 x 25
ABA5 413.44 512 211680 72 x 5 x 33 x 25
ABA5 620.16 1024 635040 72 x 5 x 34 x 25
ABA5 676.53 2816 1905120 72 x 5 x 35 x 25
BBA5 4.50 2 9 32
BBA5 11.25 4 45 5 x 32
BBA5 36.00 8 288 32 x 25
BBA5 90.00 16 1440 5 x 32 x 25
BBA5 135.00 32 4320 5 x 33 x 25
BBA5 210.00 48 10080 7 x 5 x 32 x 25
BBA5 315.00 96 30240 7 x 5 x 33 x 25
BBA5 472.50 192 90720 7 x 5 x 34 x 25
BBA5 515.45 528 272160 7 x 5 x 35 x 25
AAB5 3.00 1 3 3
AAB5 6.00 2 12 3 x 22
AAB5 24.00 4 96 3 x 25
AAB5 40.00 12 480 5 x 3 x 25
AAB5 42.00 16 672 7 x 3 x 25
AAB5 85.71 28 2400 52 x 3 x 25
AAB5 150.00 112 16800 7 x 52 x 3 x 25
AAB5 262.50 448 117600 72 x 52 x 3 x 25
AAB5 296.37 1984 588000 72 x 53 x 3 x 25
BAB5 3.00 1 3 3
BAB5 6.00 2 12 3 x 22
BAB5 7.00 3 21 7 x 3
BAB5 24.00 4 96 3 x 25
BAB5 56.00 12 672 7 x 3 x 25
BAB5 85.71 28 2400 52 x 3 x 25
BAB5 93.33 36 3360 7 x 5 x 3 x 25
BAB5 200.00 84 16800 7 x 52 x 3 x 25
BAB5 225.81 372 84000 7 x 53 x 3 x 25
ABB5 3.00 1 3 3
ABB5 7.50 2 15 5 x 3
ABB5 24.00 4 96 3 x 25
ABB5 60.00 8 480 5 x 3 x 25
ABB5 105.00 32 3360 7 x 5 x 3 x 25
ABB5 183.75 128 23520 72 x 5 x 3 x 25
BBB5 3.00 1 3 3
BBB5 7.50 2 15 5 x 3
BBB5 24.00 4 96 3 x 25
BBB5 60.00 8 480 5 x 3 x 25
BBB5 140.00 24 3360 7 x 5 x 3 x 25
AAA3 4.50 2 9 32
AAA3 18.00 4 72 32 x 23
AAA3 27.00 8 216 33 x 23
AAA3 30.00 12 360 5 x 32 x 23
AAA3 40.50 16 648 34 x 23
AAA3 45.00 24 1080 5 x 33 x 23
AAA3 64.29 28 1800 52 x 32 x 23
AAA3 67.50 48 3240 5 x 34 x 23
AAA3 96.43 56 5400 52 x 33 x 23
AAA3 144.64 112 16200 52 x 34 x 23
AAA3 168.75 224 37800 7 x 52 x 33 x 23
AAA3 253.12 448 113400 7 x 52 x 34 x 23
AAA3 295.31 896 264600 72 x 52 x 33 x 23
AAA3 442.97 1792 793800 72 x 52 x 34 x 23
AAA3 483.24 4928 2381400 72 x 52 x 35 x 23
AAA3 500.13 7936 3969000 72 x 53 x 34 x 23
AAA3 545.59 21824 11907000 72 x 53 x 35 x 23
BAA3 4.50 2 9 32
BAA3 18.00 4 72 32 x 23
BAA3 27.00 8 216 33 x 23
BAA3 42.00 12 504 7 x 32 x 23
BAA3 63.00 24 1512 7 x 33 x 23
BAA3 64.29 28 1800 52 x 32 x 23
BAA3 70.00 36 2520 7 x 5 x 32 x 23
BAA3 94.50 48 4536 7 x 34 x 23
BAA3 96.43 56 5400 52 x 33 x 23
BAA3 105.00 72 7560 7 x 5 x 33 x 23
BAA3 150.00 84 12600 7 x 52 x 32 x 23
BAA3 157.50 144 22680 7 x 5 x 34 x 23
BAA3 225.00 168 37800 7 x 52 x 33 x 23
BAA3 337.50 336 113400 7 x 52 x 34 x 23
BAA3 368.18 924 340200 7 x 52 x 35 x 23
BAA3 381.05 1488 567000 7 x 53 x 34 x 23
BAA3 415.69 4092 1701000 7 x 53 x 35 x 23
ABA3 4.50 2 9 32
ABA3 18.00 4 72 32 x 23
ABA3 45.00 8 360 5 x 32 x 23
ABA3 67.50 16 1080 5 x 33 x 23
ABA3 101.25 32 3240 5 x 34 x 23
ABA3 118.12 64 7560 7 x 5 x 33 x 23
ABA3 177.19 128 22680 7 x 5 x 34 x 23
ABA3 206.72 256 52920 72 x 5 x 33 x 23
ABA3 310.08 512 158760 72 x 5 x 34 x 23
ABA3 338.27 1408 476280 72 x 5 x 35 x 23
BBA3 4.50 2 9 32
BBA3 18.00 4 72 32 x 23
BBA3 45.00 8 360 5 x 32 x 23
BBA3 67.50 16 1080 5 x 33 x 23
BBA3 105.00 24 2520 7 x 5 x 32 x 23
BBA3 157.50 48 7560 7 x 5 x 33 x 23
BBA3 236.25 96 22680 7 x 5 x 34 x 23
BBA3 257.73 264 68040 7 x 5 x 35 x 23
AAB3 3.00 1 3 3
AAB3 12.00 2 24 3 x 23
AAB3 20.00 6 120 5 x 3 x 23
AAB3 21.00 8 168 7 x 3 x 23
AAB3 42.86 14 600 52 x 3 x 23
AAB3 75.00 56 4200 7 x 52 x 3 x 23
AAB3 131.25 224 29400 72 x 52 x 3 x 23
AAB3 148.19 992 147000 72 x 53 x 3 x 23
BAB3 3.00 1 3 3
BAB3 12.00 2 24 3 x 23
BAB3 28.00 6 168 7 x 3 x 23
BAB3 42.86 14 600 52 x 3 x 23
BAB3 46.67 18 840 7 x 5 x 3 x 23
BAB3 100.00 42 4200 7 x 52 x 3 x 23
BAB3 112.90 186 21000 7 x 53 x 3 x 23
ABB3 3.00 1 3 3
ABB3 12.00 2 24 3 x 23
ABB3 30.00 4 120 5 x 3 x 23
ABB3 52.50 16 840 7 x 5 x 3 x 23
ABB3 91.88 64 5880 72 x 5 x 3 x 23
BBB3 3.00 1 3 3
BBB3 12.00 2 24 3 x 23
BBB3 30.00 4 120 5 x 3 x 23
BBB3 70.00 12 840 7 x 5 x 3 x 23

Related